
IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 5, May 2017

Copyright to IJARCCE DOI10.17148/IJARCCE.2017.65109 566

Optimization of Slot and Map Reduce Workload

Vinayak Kadam
1
, Rutuja Aughad

2
, Priyanka Gaikwad

3
, Jidnyasa Khanore

4
, Pragati Naykodi

5

 Professor, Computer Dept., JSPM, Pune, India 1

Student, Computer Dept., JSPM, Pune, India 2,3,4,5

Abstract: MapReduce might be a modish computing paradigm in Hadoop. MapReduce is utilized for large-scale

process in large info. However, the slot-based MapReduce system (e.g., Hadoop MRv1) can suffer from poor

performance as a result of its unoptimized resource allocation. to resolve this downside this paper identifies and

optimizes the resource allocation from three key aspects.First, alowing to the pre-configuration of distinct reduce slots

and map slots that aren't fungible, slots will be severely under-utilized. as a result of map slots can be totally used

whereas reduce slots area unit empty, and vice-versa. This paper conjointly proposes another technique known as

Dynamic Hadoop Slot Allocation by keeping the slot-based model. It relaxes the slot allocation constraint to permit

slots to be reallocated to either map or reduce tasks reckoning on their desires. Second, the speculative execution will
tackle the strayer drawback, that has shown to boost the performance for one job however at the expense of the cluster

potenc In view of this, we tend to propose Speculative Execution Performance leveling to balance the performance

between one job and a bunch of jobs. Third, delay programming has shown to enhance the info neighbourhood

however at the price of fairness. to boot, the paper propose a way referred to as Slot PreScheduling which will improve

the info neighbourhood however with no impact on fairness. Finally, by combining these techniques along, we tend to

type a gradual slot allocation system referred to as DynamicMR which will improve the performance of MapReduce

workloads considerably.

Keywords: MapReduce, Hadoop Fair Scheduler, Delay Scheduler, DynamicMR SlotAllocation.

I. INTRODUCTION

In E-Commerce massive no. of information generates in kind of log files we tend to decision it as massive knowledge.

as an example in shopping center what percentage sales happened from explicit complete stall is mainted by

victimization log files. thus here per every informatics our program can count and so partition the massive knowledge

in kind of log files monthwise. so owners will analyse the sales and from which will take some decessions to grow the

business. Our main goal is to implement Dynamic Map reduce in Hadoop so as to beat the restrictions visaged by the

current Hadoop framework. this can facilitate in up the performance of our application and create effective use of

system resources. Upon in completion of our project, we are going to be able to show edges of victimization

DynamicMR in. Our application are able to overcome the difficulties visaged by the owners to take care of large

quantity of of information . this can improve responsibility and potency of managing E-Commerce knowledge

 In recent years, MapReduce has become a preferred high performance computing paradigm for large-scale

processing in clusters and information centers .Hadoop , associate degree open supply implementation of MapReduce,
has been deployed in giant clusters containing thousands of machines by corporations like Yahoo and Facebook to

support execution for big jobs submitted from multiple users (i.e., MapReduce workloads).Despite several studies in

optimizing MapReduce/Hadoop, there ar many key challenges for the employment and performance improvement of a

Hadoop cluster. Firstly, the cipher resources (e.g., hardware cores) are abstracted into map and reduce slots, that ar

basic cipher units and statically organized by administrator beforehand.

II. EXISTING SYSTEM

Hadoop could be a storage technique employed in huge knowledge storage. the information retrieval from Hadoop was

antecedently finished MapReduce technique. The MapReduce additionally called MRV1 consists of two main modules:

The plotter and therefore the Reducer. The plotter is employed to divide the information into standardized designed
slots that area unit then reduced into a pair of slots by the reducer. there's a collector additionally called combiner that

additionally consists of two techniques: Shuffling and Sorting. The shuffling formula integrates all the files so types

them consequently to the search result.

Hadoop MRV1
MapReduce may be a fashionable computing paradigm for large-scale processing in cloud computing. However, the

slot-based MapReduce system (e.g., Hadoop MRv1) will suffer from poor performance owing to its unoptimized

resource allocation. to handle it, this paper identifies and optimizes the resource allocation from 3 key aspects. First,

IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 5, May 2017

Copyright to IJARCCE DOI10.17148/IJARCCE.2017.65109 567

owing to the pre-configuration of distinct map slots and scale back slots that don't seem to be fungible, slots is severely

under-utilized. as a result of map slots may well be absolutely used whereas scale back slots are empty, and vice-versa.

III. PROPOSED SYSTEM

As the MRV1 has the downside of slot allocation we've planned a system: DynamicMR. Because of the slot allocation

drawback of MRV1 the slot utilization was inefficient that ultimately affected the hardware drivers of a system and its

resources. DynamicMR consists of techniques: Delay programming

A. System implementation:
This system consists of following main modules that used for build up the project.

1. MapReduce

2. Hadoop honest hardware

3. Slot Pre-Scheduling

B. MapReduce

MapReduce may be a programming model associated an associated implementation for process and generating massive

knowledge sets with a parallel, distributed algorithmic rule on a cluster.

C. Hadoop truthful computer hardware

The truthful computer hardware supports moving a running application to a unique queue. This will be helpful for

moving a vital application to a better priority queue, or for moving associate degree unimportant application to a lower

priority queue. Apps may be emotional by running yarn. Once associate degree application is emotional to a queue, its

existing allocations become counted with the new queueâTMs allocations rather than the recent for functions of crucial

fairness. An endeavor to maneuver associate degree application to a queue can fail if the addition of the appâTMs

resources thereto queue would violate the its maxRunningApps or maxResources constraints.

D. Slot Prescheduling

Slot Pre-Scheduling technique that holds ability to boost the information section whereas having no negative impact on

the fairness of MapReduce jobs. the fundamental level plan is that, in light-weight of the actual fact that there are

typically some idle slots that can not be allotted thanks to the load equalization constrain throughout runtime, we are

able to pre-allocate those slots of the node to jobs to maximise the information section..

E. Delay hardware

It delays the programming for employment by a tiny low quantity of your time, once it detects there are not any native

map tasks from that job on a node wherever its input file reside.

IV. SYSTEM ARCHITECTURE

“Figure 1 : Architecture of DynamicMR showing the various techniques used such as: DHSA, SPEB”

We improve the performance of a MapReduce cluster via optimizing the slot utilization primarily from 2 views.

1.We will classify the slots into 2 sorts, namely, busy slots (i.e., with running tasks) and idle slots (i.e., no running

tasks).

2. Given the overall variety of map and scale back slots organized by users, one optimisation approach (i.e., macro-
level optimization) is to boost the slot utilization by maximising the amount of busy slots and reducing the amount of

idle slots

IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 5, May 2017

Copyright to IJARCCE DOI10.17148/IJARCCE.2017.65109 568

A. Dynamic Hadoop Slot Allocation (DHSA)

The current configuration of MapReduce experiences associate degree under-usage of the slots because the amount of

map and cut back tasks shifts over the long-standing time.
Our dynamic slot allocation approach is taking under consideration the perception that at distinctive time there is also

idle map(or reduce) slots, because the jobs continues from map stage to cut back stage. we are able to utilize the unused

map slots for those overburden cut back tasks to reinforce the execution of the MapReduce work, and also the different

means around.

That is, we have a tendency to break the sure presumption for current MapReduce structure that the map tasks will

simply run on map slots and cut backd tasks will simply run on reduce slots.

There are 2 challenges such below that has to be considered:

(C1): truthfulness is an important metric in Hadoop Fair computer hardware (HFS). We have a tendency to proclaim it

as affordable once all pools are selected with an equivalent quantity of resource. In HFS, task slots ar initial allotted

over the pools , and later then the slots ar distributed to the roles within the pool. Also, a MapReduce job computation

embodies 2 sections: map-phase task computation and reduce-phase task computation.

(C2): The resource demand between the map slots and reduced slots ar particularly numerous. The aim for this can be
the map tasks and reduced tasks frequently show completely totally different execution styles. Cut back task contains a

tendency to expend significantly additional resources, for instance, memory and system network speed. Primarily

allowing cut back tasks to utilize map slots configuring each map slots to require additional resources, which is able to

thus reduce the powerful variety of slots on each node, making resources under-used amid runtime. With a due

appreciation towards (C1), we have a tendency to set forth a Dynamic Hadoop Slot Allocation (DHSA). It contains 2

decisions, to be specific,pool- free DHSA(PI-DHSA).

B. Pool Independent DHSA (PI-DHSA)
HFS utilizes max-min fairness to apportion slots crosswise over pools with least ensures at the map-phase and reduce-

phase, separately. Pool-Independent DHSA (PI-DHSA) extends the HFS by dispensing slots from the clusters of

worldwide level and freed from pools.
The allocation procedure is comprised of 2 sections:

C. Intra-phase dynamic slot allocation

Each pool is an element into 2 sub-pools, i.e., map section pool and scale back section pool. At each stage, each pool

can get its share of slots.

D. Inter-phase dynamic slot allocation

After the intra-phase dynamic slot allocation for each the map-phase and reduced section, next we will perform the

dynamic slot allocation crosswise over written section

The entire dynamic slot allocation flow is that, at no matter purpose a pulse is gotten from a computing node, initially

we tend to method the mixture demand for map slots and cut back slots for this MapReduce employment. At that time

we tend to focus alertly the requirement to accumulate map (or cut back) slots for cut back (or map) tasks in

lightweight of the interest for map and reduce slots, with regard to these four things. The particular range of map (or
reduce) slots to be obtained relies on the account of amount of unused reduced (or map) slots and its map (or reduce)

slots required.

To accomplish the reservation quality, we tend to offer 2 variables rate Of Borrowed Map Slots and rate Of- Borrowed

cut back Slots, outlined because the rate of unused map and reduced slots which will be obtained, separately. Thus, we

will prohibit the amount of unused map and reduced slots that got to be distributed for map and reduced tasks at each

IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 5, May 2017

Copyright to IJARCCE DOI10.17148/IJARCCE.2017.65109 569

pulse of that task hunter. With these 2 parameters, shoppers will flexibly modify the exchange off between the

performance execution improvement and therefore the starvation diminution.

In addition, Challenge (C2) makes to review that we will not treat map and scale back slots as same, and simply acquire
unused slots for map and scale back tasks. Rather, we must always be conscious of shifted resource sizes of map and

scale back slots. A slot weight- based mostly methodology is so planned to handle the difficulty. We have a tendency to

allot the map and scale back slots with distinctive weight values, concerning the quality configurations. Explicit to the

weights, we are able to alterably decide the number of map and scale back tasks that has got to be generate within the

length of runtime.

E. Pool-Dependent DHSA (PD-DHSA)

As opposite purpose on checking towards PI-DHSA Pool-Dependent DHSA (PD-DHSA) considers fairness for the

dynamic slot allocation across pools. acceptive that each pool, includes two sections: Map part pool and Dynamic part

pool, is selfish. it's thought of truthful once combination quantities of map and scale back slots allotted across pools

square measure constant with each other. PD-DHSA are going to be performed with the incidental to 2 courses of

actions:

(1). Intra-pool dynamic slot allocation

At early stage, every typed- section pool can receive its share of typed-slots supported max-min fairness at every

section. There are four attainable relationships cases for each pool relating to its demand (denoted as mapSlots

Demand, reduceSlots Demand) and its employment (marked as mapShare, reduceShare) between 2 phases:

Case (a). mapSlotsDemand < reduceShare, and reduceSlots-Demand > reduceShare. We will use a number of the

unused map slots for its full scale back tasks from its reduce-phase pool 1st before exploitation alternative pools.

Case (b). mapSlotsDemand > mapShare, and reduceSlots- Demand < reduceShare. We will use some unused

scale back slots for its map tasks from its map-phase pool 1st before exploitation pools.

Case (c). mapSlotsDemand < mapShare, and reduceSlots- Demand < reduceShare. Each map slots and scale back

slots ar enough for its use. It will provide some unused map slots and scale back slots to alternative pools.
Case (d). mapSlotsDemand > mapShare, and reduceSlots- Demand > reduceShare. If each map slots and scale

back slots of a pool became insufficient . It should ought to borrow some unused map or scale back slots from

alternative pools through inter-Pool dynamic slot allocation is shown below.

(2). Inter-pool dynamic slot allocation

It is obvious that,

(i). if a pool, has mapSlotsDemand + reduceSlotsDemand < mapShare + reduceShare. The slots enough for the pool

and there's no got to get some map or cut back slots from alternative pools

(ii).On the contrary, once mapSlotsDemand + reduceSlotsDemand mapShare + reduceShare the slots don't seem to be

enough even when Intra-pool dynamic slot allocation.

The overall slot allocation method for PD-DHSA is as sketched down below in figure

At first, it computes the most variety of free slots that may be allotted at every spherical of heartbeat for the tasktracker.

Next it starts the slot allocation for pools. for each pool, there four attainable slot allocations as illustrated in Figure on

top of.
Case(1): we tend to strive the map tasks allocation, if there are a unit idle map slots for the task hunter, and there

unfinished map tasks for the pool.

IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 5, May 2017

Copyright to IJARCCE DOI10.17148/IJARCCE.2017.65109 570

Case(2): If try of Case(1) fails, the condition doesn't hold sensible, and it cannot realize a map task satisfying the valid

data-locality level, we tend to still strive cut back tasks allocation once there unfinished cut back tasks and idle cut back

slots.
Case (3): If Case(2) fails attributable to the desired conditions doesn't hold, we tend to view map task allocation once

more. If Case (1) fails then there won't have to be compelled to be any idle map slots accessible. In distinction, if Case

(2) fails then there are not any unfinished cut back tasks. During this case, we will relay on cut back slots for map tasks

of the pool.

Case (4): for If Case(3) fails, we tend to strive cut back task allocation yet again. Case(1) and Case(3) fail can be

attributable to no valid locality-level unfinished and map tasks accessible, however there area unit idle map slots. In

distinction, Case(2) msight not have any idle cut back slots accessible. At such cases, we will allot map slots for cut

back tasks for the pool.

V. CONCLUSION

This paper gift the thought of enhancing the storage techniques for giant information victimization Hadoop.
DynamicMR provides further options which will be accustomed accelerate the knowledge retrieval victimization the

Hadoop technology. MRV1 lacks within the economical storage of knowledge. The MRV1 uses a collector that

includes a assortment of algorithms to kind the info. As in DynamicMR the collector isn't gift and therefore the

information is keep dynamically. The DynamicMR conjointly uses a clerk to map the correct information and a scale

backr which will reduce the storage slots of this information. Thus, DynamicMR utilizes the idle yet as busy slots once

retrieving info or once storing information.

REFERENCES

[1] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters, In Proceedings of the 6th Symposiumon Operating

SystemsDesign and Implementation (OSDI), 2004.

[2] Hadoop. http://hadoop.apache.org.

[3] B. Moseley, A. Dasgupta, R. Kumar, T. Sarl, On scheduling in map-reduce and flow-shops. SPAA, pp. 289-298, 2011.

[4] A. Verma, L. Cherkasova, R. Campbell. Two Sides of a Coin: Optimizing the Schedule of MapReduce Jobs to Minimize Their Makespan and

Improve Cluster Performance. MASCOTS 2012.

[5] J. Dittrich, J.-A. Quiane-Ruiz, A. Jindal, Y. Kargin, V. Setty, and J. Schad. Hadoop++: Making a Yellow Elephant Run Like a Cheetah, PVLDB,

3(1), 2010.

[6] D.W. Jiang, B.C. Ooi, L. Shi, and S. Wu.The Performance of MapReduce: An Indepth Study, PVLDB, 3:472-483, 2010.

[7] T. Nykiel, M. Potamias, C. Mishra, G. Kollios, and N. Koudas. MRShare: Sharing Across Multiple Queries in MapReduce . Proc. of the 36th

VLDB (PVLDB), Singapore, September 2010.

[8] HowManyMapsAndReduces. http://wiki.apache.org/hadoop/HowManyMaps AndReduces.

http://wiki.apache.org/hadoop/HowManyMaps

